Characterizing Gas and Ice
Giant Planets with LUVOIR
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Why Giants?

» First directly imaged planets to be characterized in
reflected light

* Proving ground for many reflected light challenges
(clouds, hazes, abundances, radii, gravity, T, ....)

» Context for directly imaged terrestrial worlds

» WFIRST will not do all that needs to be done
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Today

* Giant planet visible spectra 101

* What do we want to know?

* How do we find out?
* Cloud heights from narrow band images
* Methane abundance from spectra

* What will and won’t WFIRST do?

* Lessons for space based coronagraphs



Giant Planet Spectra
101



JUPITER, SATURN, URANUS and NEPTUNE
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PLATE V.—V. M. Slipher: Photograph of spectra 1909 of (top line) Moon, (2) Jupiter, (3) Saturn, (4) Uranus, (5) Neptune.
(From Lowell Observatory Bulletin 42; electro supplied by English Universities Press.)
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Temperature structure (set by stellar flux) controls

log(pressure) (bar)

chemistry & clouds.
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Temperature structure (set by stellar flux) controls
chemistry & clouds.
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Condensate Cloud Layers

L dwarfs L to M dwarf transition

Lodders (2004)



CH, gas

KCI
CH4 gas CH4
2T LS
NaQS
KCI
LiF Li,S CO gas

NayS
CO gas
Y Mg-siicates 4

Deeper Perovskite =~ Corundi

Hotter CO gas CO gas
Denser Perovskite @ Corundum

Jupiter T dwarfs




Thus Not all Jupiters are
Jupiter

Clouds depend on
BOTH internal heat
flow (mass, age) and
incident flux.

Color and albedo are
functions of type and
depth of clouds.
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Thus Not all Jupiters are
Jupiter

Clouds depend on
BOTH internal heat
flow (mass, age) and
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functions of type and
depth of clouds.

photochemistry



Jupiters Neptunes
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What do we Want to
Know?¢
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Clouds & chab ||ty

Clouds reflect atmospheric temperat
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What about Transit Spectroscopy?
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How do we Find Out?
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Fig. 1. Penetration of sunlight into the atmosphere of Uranus vs. wavelength. Solid curves are shown for two-way vertical optical depths of 1, 2, and 4 from CH; and Hz
absorption, assuming a 2.26% CH, mixing ratio. Dotted curves show the same optical depths for Rayleigh scattering, except for 1> 1um, where curves are shown for Rayleigh
optical depths of 0.1 and 0.01. HST/WFPC2, HST/ACS, and Keck/NIRC2 filters are shown as system throughput curves, normalized to unity at their peaks. See Table 3 for
additional filter information.
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Weak methane (727 nm)

Continuum (751 nm)

Air Force Advanced Electro-Optical System (AEOS) 3.6-m telescope on Maui



High Clouds on Uranus
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Shoemaker-Levy 9 Impact on Jupiter seen with Hubble
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Uranus with Hubble/STIS
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H2 Opacity Also Important in Ice Giants
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Jupiter’s Atmospheric Composition and Cloud Structure Deduced from
Apbsorption Bands in Reflected Suniight

MAKIKO SATO AND JAMES E. HANSEN
NASA Goddard Institute for Space Studies, Goddard Space Flight Center, New York, NY 10025

(Manuscript received 2 March 1979)

Classic 1979 paper on deriving giant planet abundances

lent width. Since there are available observations
of both weak and strong methane bands, we expect

to be able to obtain at least one parameter describ-
ing the vertical cloud structure in addition to ob-
taining the methane abundance.
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Step 1: Cloud Model

Fi1G. 6. Schematic illustration of the 6 parameters in our
version of the two-cloud model.

First use H2 quadrupole lines to constrain cloud.

For each model we include the constraint that it
vield the observed equivalent width for the 4-0

S(1) hydrogen gquadrupole lie (Section 4). We
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Step 2: CH4 Abundance
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Step 3: Consistency Checks

» Utilize entire spectrum to check derived
abundance

* Further constrain high altitude hazes and NH3
abundances

* All by bootstrapping using multiple CH4 bands
plus continuum



Accuracy?

Our results indicate that

Since NH,
and H,0 are less volatile than CH,, one would ex-

pect their abundances relative to the solar values to
be at least as great. OQur conclusion that n(NH,)
~ 1.5 = 3.5 for P ~ 1-4 bars 1s consistent with
n(NH;) ~ 2 through the bulk of the envelope.
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Issues for Giant Exoplanets

* Noisier data

» Little to no a priori knowledge (gravity, radius,
gross atmospheric structure, orbital phase, etc.)

 Same issues will be faced by terrestrial planet
studies (giants just get there first)



MCMC Retrievals of
Cool Giants
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Example: Jupiter
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9 parameters
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Retrieval Assumed Unconstrained Gravity

25 MJup

6 MJup

1 MJup

2.4 -0.8
|0g fcHa

Higher gravity implies smaller column abundance above
cloud and more CH4



However...

» Astrometry of RV planets will resolve
sin i uncertainty and constrain masses

* Need about 3 visits for mass good to

about 20%

» Along with radius constraints should
provide much tighter log g range
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Complications....
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Conclusions

* Decades of experience exist for extracting
atmospheric composition for Solar System giants

* Both methane AND continuum samples are important
for determining altitudes and compositions

* Observing more than one methane band significantly
improves knowledge of atmospheric vertical structure

* Cloud heights, absorber abundances can be
accurately derived from visible spectra for R > 70



Won't WEIRST DqAII This®

 Coronagraph Instrument is technology
demonstrator for high contrast imaging |

* Only 2.4-m telescope, 1 year for coronagraph
* Very Limited targets w/spectra only 600 to 900nm

* No NHs3, likely no H2O, weak constraints on hazes



LUVOIR Advantages
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Role for LUVOIR

* Characterize all possible planets
» provides context for habitable planets
* need to understand systems holistically incl. near misses
* Nature of super Earths/sub-Neptunes
» Giant planets
* easier, outstanding spectroscopy targets (OWA requirement)

* laboratories for clouds, composition (CH4, H,O, NH3 Na, K)
photochemistry, formation, stellar influence, etc.



Polarization”



Backup



Polarization of Venus ~
Dollfus & Coffeen ’

® L (local)

(1970)

Fig. 1. Polarization of Venus. French Observations.
1960—1970
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Fig. 1. Polarization of Venus. French Observations.
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The Imaging Photopolarimeter Experiment on Pioneer 11

Abstract. For 2 weeks continuous imaging, photometry, and polarimetry ob-
servations were made of Jupiter and the Galilean satellites in red and blue light
from Pioneer 11. Measurements of Jupiter’s north and south polar regions were
possible because the spacecraft trajectory was highly inclined to the planet’s
equatorial plane. One of the highest resolution images obtained is presented
here along with a comparison of a sample of our photometric and polarimetric
data with a simple model. The data seem consistent with increased molecular
scattering at high latitudes.

Al Baoker et al. (1975)
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To retrieve abundances
need to constrain both
cloud height (absorbing
gas column) and band
depths. For this need
multiple bands plus
continuum.
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